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The Space Biomedicine program is designed to foster interdisciplinary collaboration across a wide
range of global challenges, as highlighted below.

Human Health and Physiology in Space +
Mitochondrial and Metabolic Health +
ABOUT
Space Biomedicine
Radiation Exposure and Countermeasures +
Advanced Medical Technologies for Space +
Genetic, Omics, and Cellular Research +

The Space Biomedicine program at the University of Pittsburgh is at the forefront of
integrating space biology with advanced biomedical research. Its mission is to develop
innovative technologies to safeguard human health and optimize performance in space, Microbiology and Immune System in Space +
while also translating the knowledge gained from space research into solutions for terrestrial

healthcare. In addition to its research focus, the program has a second mission: to promote

education and outreach in space biomedicine. It aims to establish a robust educational Pharmacology and Drug Development +
environment that not only supports the University of Pittsburgh but also engages domestic

and global partners, preparing the next generation of space researchers and advancing

knowledge in this critical field. Environmental and Sustainability Research +

Advancing Human Health from Space to Earth _ _ ,
Technological Innovation and Translational Research +

As commercial and private spaceflight activities increase, particularly in low Earth orbit (LEO),
the Space Biomedicine program is dedicated to generating impactful discoveries that not
only address the challenges of space exploration but also provide tangible solutions for AI/ML-Driven Space Medicine Research +
improving human health and environmental sustainability on Earth. The program’s
collaborative approach ensures that its research outcomes will have broad applications both
in space and on Earth, while its educational initiatives will cultivate a new generation of
experts in space biology and medicine.
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The Global Education Certificate Space Program at the University of Pittsburgh (Pitt) aims to establish a
cross-institutional and global education initiative that brings together leading academic, industry, and
nonprofit entities to educate the next generation of space biology and biomedicine scientists. This
innovative program will encompass student exchanges, joint seminars, integrated curricula, and co-
teaching by faculty across multiple institutions globally, with Pitt as the central hub.
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Initial Ideas for Implementation:
1. Degree Programs and Curriculum Development:
e} Develop a curriculum that enables students to earn a degree in Space Biomedicine/Biology. At Pitt, we’ve already introduced an “Introduction to Space Engineering”
course, which has seen high demand. Building on this momentum, we could develop and offer Space Biomedicine courses in future semesters that will be applied as
a cross-institutional approach, that would amplify our impact!
2. Credit Transfer and Course Structure:
o Ensure course credits are transferable across all participating institutions. Classes will be available in both in-person and virtual formats. Faculty and scientists from
various institutions could co-teach courses, allowing us to leverage diverse expertise and avoid overburdening any single instructor.
3. Industry and Non-Profit Collaboration:
o Collaborate with industry partners to sponsor and support student programs. Industry experts could also provide courses on translating academic research into
commercial applications, which is crucial for space biomedicine and rapid deployment of key technologies and countermeasures.
4. Space Industry Partnerships:
o Engage space industry partners such as SpaceX, Axiom, and hardware developers like my collaborator from EcoAtoms and Ice Cubes. As the program develops, we
can involve additional partners to broaden our network and capabilities.
5. Incorporating GenelLab for Universities (GL4U):
o Utilize the existing Genelab 4 University program. We can evolve this into a core component of our curriculum.
6. Global, Collaborative Effort:
o Create a community-driven program that integrates space biomedicine/biology education across institutions. The program will cover foundational to advanced topics,
reflecting the rapid advancements in this field.
7. Support from Space Agencies and Funding Opportunities:

o | have had preliminary discussions with a couple people at NASA, and they mentioned there might be potential funds they can provide for such an effort, at least in the
US. | will be exploring this further next week. This will probably take a while to put in place, BUT there is very positive and enthusiastic interest.
o I am also in touch with colleagues at ESA, who are very supportive and keen to participate. | will be discussing this with them in a few weeks.

8. Nonprofit and Industry Engagement:
o Engaging nonprofits and industry stakeholders will be critical. With initial momentum, | believe we can secure their support fairly easily.
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Fundamental Biological Features of Spaceflight: Advancing the Field to
Enable Deep-Space Exploration
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Fundamental Biological Features of Spaceflight: Advancing the Field to
Enable Deep-Space Exploration
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FEMALE ASTRONAUT

Female astronauts,
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loss with advancing age, and do
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of hearing in the left ear
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Women demonstrate
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speed in response to
an alertness test
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Fundamental Biological Features of Spaceflight: Advancing the Field to

Enable Deep-Space Exploration

Pitt McGowan

A Mission and long-term health risks
Mission type | Low Earth LowEarth | Deepspace | Lunarvisiv | Deepspace | Planetary
orbit orbit sortie habitat journey visit/habitat
Mission duration | 6months | 12 months 1 month 12months | 12months | 36 months
Return duration <=1day <=1day <5days 5 days Weeks/ Months.
months
Radiation |  Van Allen Van Allen | Deep Space Lunar Deep Space |  Variable
Gravity Micro Micro Micro 1/6g Micro Variable
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NASA TV

Squids and Other Research Heading to the
Station. Yes, Squids!

In just over a week on June 3, 2021, these tiny squids will head to space along with many other scientific experiments aboard

SpaceX's 22nd cargo resupply mission to the International Space Station. The squids are a part of the UMAMI study which
ines the effects of sp ight on il i between beneficial microbes and their animal hosts. UMAMI stands for

L g of Microgravity on Animal-Microbe play a signif

animal tissues and in maintaining human health

role in the normal development of

Ur{iversity of
Pittsburgh

Newly hatched squid right before being added to the
spaceflight hardware. (Photo credit: Jamie Foster)
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Hatchling squid in their space aquariums. (Photo credit:

Jamie Foster)
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Question:

Can we leverage other publicly
availlable data platforms to
determine novel hypothesis and
data for advancing both clinical and
spaceflight related issues?
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MicroRNAs (miRNASs) are one of the many types of RNAs

that don’t code for proteins.

Instead, they target and bind to sequences in specific

MRNAS (i.e. genes) and can block the mRNA from being

translated.

MiRNAs don’t travel alone: they pair up with a large

protein called Argonaute, which protects them from

destructive enzymes called nucleases in the cell.

* Because of this protective protein, miRNAs can live in

the cell for up to a week, floating around and
targeting mMRNAs for degradation.
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* Asingle miRNA can regulate 100s to 1000s of mRNAs.
*  miRNAs are ~22nt

Weber, B., Franz, N., Marzi, |. et al. Extracellular vesicles as mediators and markers of acute organ injury: current
concepts. Eur J Trauma Emerg Surg 48, 1525-1544 (2022). https://doi.org/10.1007/s00068-021-01607-1
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«  miRNAs are now known to be involved in all aspects of diseases.

*  miRNA are not only found in mammals, but everything else living: plants, microbes, fish,

C. Elegans, fruit flies, insects, etc...
*  miRNAs are highly conserved across species.

*  miRNAs can be good biomarkers and therapeutic targets for many diseases
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Impact on Extracellular Molecules and Extracellular Vesicles

Extracellular vesicles are prime candidates for cross-talk vectors, and their study in organisms in
space is critical for an understanding of the biological effects of the space environment. Extracellular
molecules are the communicators in intra-organism cross talk and can be either small molecules, protein-
based, or nucleic acid-based. Some proteins like insulin or inflammatory response molecules like
cytokines have been known for some time, whereas others are still being discovered (e.g., histone
variants). Cell-free nucleic acids include several types of DNAs and RNAs, and also have shown
responsiveness to spaceflight (e.g., mitochondrial DNA, mtDNA) (Lo et al. 2021). First recognized as
biomarkers in cancer patients (Schwarzenbach et al. 2011), these molecules are potentially biomarkers for
many more pathologies and homeostasis changes in organisms in the space envi t. Indeed, Malkani
and colleagues have identified and validated a spaceflight-associated microRNA (miRNA) signature that
is shared by rodents and humans in response to simulated short-duration and long-duration spaceflight
(Malkani et al. 2020). Additionally, a subset of these miIRNAs was found to regulate vascular damage
caused by simulated deep-space radiati

Extracellular vesicles are a heterogeneous group of membrane-limited vesicles loaded with
various proteins, lipids, and nucleic acids. Release of extracellular vesicles from its cell of origin occurs
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Common miRNAs Between SGA and Space Environment (* adj. p < 0.05 and # p < 0.05)
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Diseases Associated with 13 Common miRNAs
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Simulated Spaceflight Mice Experiments (* p < 0.05)
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Simulated Spacefllght MICE Experiments (* p < 0.05)
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Can we determine potential countermeasures to
mitigate the impact of SGA in females during
spaceflight and the clinic???
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sChemNET: A deep learning framework for predicting miRNA targets of small
molecules based on chemical structure
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sChemNET: A deep learning framework for predicting miRNA targets of small
molecules based on chemical structure
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Triamcinolone is a glucocorticoid used to treat a number
of different medical conditions, such as eczema, alopecia
areata, lichen sclerosus, psoriasis, arthritis, allergies,
ulcerative colitis, lupus, sympathetic ophthalmia, temporal
arteritis, uveitis, ocular inflammation, keloids, urushiol-
induced contact dermatitis, aphthous ulcers (usually as
triamcinolone acetonide), central retinal vein occlusion,
visualization during vitrectomy and the prevention of
asthma attacks.
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NASA Selects 11 Space
Biology Research Projects to
Inform Biological Research
During Future Lunar
Exploration Missions

Hypothesis: We hypothesize during exposure to

regolith and spaceflight, there is an increase in

oxidative phosphorylation (OXPHOS) in the liver
is due to increases in mitochondrial DNA
(mtDNA) driven by microRNAs (miRNAs)
creating a systemic impact on the body.

S:?Radiation )

https://science.nasa.gov/science-research/biological-physical-
sciences/nasa-selects-11-space-biology-research-projects/

Animal Research Investigations

Cheryl Nickerson, Arizona State University
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| SPECIFIC AIM 1: Determine mtDNA and associated spaceflight miRNAs copy numbers '

in livers and 3D tissues exposed to regolith and the space environment.
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SPECIFIC AIM 2: Investigate the pathogen load, inflammation, immune, and DNA DSBs
in the liver during exposure to regolith and simulated deep space environment.
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SPECIFIC AIM 3: Develop and test a miRNA-based countermeasure with and without
existing FDA-approved drugs to improve mitochondria and immune dysfunction during
regolith exposure and spaceflight. 0.56y sim
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Test tmiRNA manipulation with simulated
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